Brookhaven Super-Neutrino Beam Scenario #### Steve Kahn Representing Ideas of M. Diwan, S. Kahn, K. McDonald, R. Palmer, Z. Parsa ### Staging a Neutrino Factory - Two feasibility studies for a **Neutrino Factory** have been performed. - These studies indicate a cost of 2-2.5 B\$. - This kind of money may not be available in the current climate - They indicate an optimistic turn-on date of 2012. - We might like to do some physics before that. - A staged approach to building a Neutrino Factory maybe desirable. - First Phase: Upgrade AGS to 1 MW - Second Phase: Build pion capture system. - Third Phase: Build phase rotation and part of cooling system. - Fourth Phase: Finish Neutrino Factory. - Each phase can support a physics program. Snowmass July 7,2001 ### First Phase Super Neutrino Beam Upgrade AGS to 1MW Proton Driver: | Machine | Power | Proton/Pulse | Repetition Rate | Protons/Snowmass year | |------------------------------|-------------|----------------------|--------------------|-----------------------| | Current AGS | 0.23 MW ??? | 6×10^{13} | 0.625 Hz | 3.75×10^{20} | | AGS Proton Driver | 1 MW | 1×10^{14} | 2.5 Hz | 2.5×10^{21} | | Japan Hadron Facility | 0.77 MW | 3.3×10^{14} | $0.29~\mathrm{Hz}$ | 9.6×10^{20} | | Super AGS Prot Driver | 4 MW | 2×10^{14} | 5.0 Hz | 1.0×10^{22} | - Both BNL and JHF have eventual plans for their proton drivers to be upgraded to 4 MW. - Build Solenoid Capture System: - 20 T Magnet surrounding target. Solenoid field falls off to 0.1 T in 45 m. - This magnet focuses both π^+ and π^- . Beam will have both ν and ν - A solenoid is more robust than a horn magnet in a high radiation. - A horn may not function in the 4 MW environment. - A solenoid will have a longer lifetime since it is not pulsed. ### Solenoid Capture Sketch of solenoid arrangement for Neutrino Factory - •If only ν and not $\bar{\nu}$ is desired, then a dipole magnet could be inserted between adjacent solenoids above. - •Inserting a dipole also gives control over the mean energy of the neutrino beam. # Captured Pion Distributions ### **Detector Choices** - The far detector would be placed 350 km from BNL (near Ithica, NY). - There are salt mines in this area. One would put the detector 2 km below ground. - We are favoring Liquid Ar TPC similar to *Icarus*. The far detector would have 50 ktons fiducial volume (65 ktons total.) - Provides good electron and π° detection. - The detector will sit between dipole coils to provide a field to determine the lepton charge. - Close in 1 kton detectors at 1 km and/or 3 km. - 1 km detector gives v beam alignment and high statistics for detector performance. - 3 km detector is far enough away that v source is a point. ### Detectors Are Placed 1.5° Off v Beam Axis - Placing detectors at a fixed angle off axis provides a similar E_v profile at all distances. - It also provides a lower E_v distribution than on axis. - μ from π decays are captured by long solenoid channel. They provide low E_{ν} enhancement. - Integrated flux at each detector: - Units are $v/m^2/POT$ | Detector Position | ν_{μ} | Anti ν_{μ} | $v_{\rm e}$ | Anti ν _e | |--------------------------|-----------------------|-----------------------|------------------------|------------------------| | At 1 km | 1.88×10^{-2} | 1.53×10^{-2} | 1.75×10^{-4} | 1.26×10^{-4} | | At 3 km | 2.07×10^{-3} | 1.67×10^{-3} | 1.75×10^{-5} | 1.36×10^{-5} | | At 350 km | 1.49×10^{-7} | 1.4×10^{-7} | 9.27×10^{-10} | 9.27×10^{-10} | # Neutrino Oscillation Physics - The experiment would look at the following channels: - v_{μ} disappearance -- primarily $v_{\mu} \rightarrow v_{\tau}$ oscillations. - Sensitive to Δm_{23}^2 and θ_{23} - Examine ratio of $vn \rightarrow \mu p$ (QE) at 350 km detector to 3 km detector as a function of E_{ν} . - $vN \rightarrow v\pi^{o}N$ events - These events are insensitive to oscillation state of v - Can be used for normalization. - V_e appearance - (continued on next transparency) ### v. Appearance Channel - There are several contributions to $P(v_u \rightarrow v_e)$: - Solar Term: $P_{\text{solar}} = \sin^2 2\theta_{12} \cos^2 \theta_{13} \cos^2 \theta_{23} \sin(\Delta m_{\text{sol}}^2 L/4E)$ - This term is very small. - Tau Term: $P_{\tau} = \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 (\Delta m_{atm}^2 L/4E)$ - This is the dominant term. - Terms involving the CP phase δ : - There are both CP conserving and violating terms involving δ . - The CP violating term can be measured as $$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \approx \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \sin \delta$$ - This asymmetry is larger at lower E_v . This could be ~25% of the total appearance signal at the optimum E_v - The 4 MW proton driver would be necessary for this asymmetry ### **Event Estimates Without Oscillations** - Below is shown event estimates expected from a solenoid capture system - The source is a 1 MW proton driver. - The experiment is run for 5 Snowmass years. This is the running period used in the JHF-Kamioka neutrino proposal. - These are obtained by integrating the flux with the appropriate cross sections. | Detector Position | $v_{\mu}n\rightarrow \mu^{-}p$ | $\bar{\nu}_{\mu}p{\rightarrow}\mu^{\dagger}n$ | $\nu N \rightarrow \nu N \pi^{\rm o}$ | $v_e n \rightarrow e^- p$ | $\bar{\nu}_{e}p \rightarrow e^{+}n$ | |--------------------------|--------------------------------|---|---------------------------------------|---------------------------|-------------------------------------| | At 1 km | 2.14×10^7 | 5.31×10^6 | 3.02×10^{6} | 2.97×10^{5} | 71100 | | At 3 km | 2.37×10^6 | 5.81×10^{5} | 3.35×10^{5} | 2.95×10^4 | 7690 | | At 350 km | 9050 | 2440 | 1361 | 108 | 28.3 | • Estimates with a 4 MW proton driver source would be four times larger. ### Cosmic Ray Background - This table shows the cosmic ray rates for a detector placed on the surface. - The rate reduction factors come from the E889 proposal. - The events shown are scaled to the 350 km detector mass and 5 Snowmass year running period. | | Muons | Neutrons | |--|-----------------------|-----------------------| | Raw Rate (kHz) | 81.7 | 2.7 | | Beam Time Correlation Reduction | 2.5×10^{-7} | 2.5×10^{-7} | | Passive/Active Shielding | 0.001 | 0.18 | | Energy Cuts | 0.47 | 0.26 | | Vertex and Direction Info | 0.0033 | 0.062 | | Total Reduction | 3.9×10^{-13} | 7.2×10^{-10} | | Background in 5×10^7 sec | 34 | 2280 | - The detector will be placed 2 km below ground in a mine. - The residual cosmic ray background would be ~ 0.002 events. # Backgrounds to v_e Appearance Signal - The largest backgrounds to the $v_{\mu} \rightarrow v_{e}$ signal are expected to be: - $-v_e$ contamination in the beam. - This was $\sim 1\%$ in the capture configuration that was used in this study. It can be made smaller as I previously discussed. This could be $\sim 0.5\%$ - Neutral Current $\nu\pi^{\circ}N$ events where the π° are misidentified as an electron. - If a γ from the π° converts close to the vertex (Dalitz decay) and is asymmetric. - The magnetic field and dE/dx will be helpful in reducing this background. Simulation study is necessary. - I estimate (guess) that this background is ~ 0.001 of the $\nu \pi^{\circ} N$ signal. ### Conclusions - A high intensity neutrino super beam maybe an extremely effective way to study neutrino oscillations. - In particular the 4 MW version of the super beam may be the only way to observe CP violation in neutrino oscillations without a *Muon Ring Neutrino Factory*. - This experiment is directly competitive with the JHF-Kamioka neutrino project. - Do we need two such projects? I will not answer that! - At this point this is a *Snowmass Study*. We have only invested a few man-weeks in it.